skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaller, G Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 2, 2026
  2. The titan arum (Amorphophallus titanum), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants. Here, we made use of transcriptome and metabolite analyses to uncover underlying mechanisms that enable thermogenesis and volatile production in the titan arum. The ability to perform thermogenesis correlated with the expression of genes involved in bypass steps for the mitochondrial electron transport chain, in particular alternative oxidase expression, and through our analysis is placed within the context of sugar transport and metabolism. The major odorants produced by the titan arum are dimethyl disulfide and dimethyl trisulfide, and we identified pathways for sulfur transport and metabolism that culminate in the production of methionine, which our analysis identifies as the amino acid substrate for production of these odorants. Putrescine, derived from arginine, was identified as an additional and previously unrecognized component of the titan arum's odor. Levels of free methionine and putrescine were rapidly depleted during thermogenesis, consistent with roles in production of the titan arum's odor. Models for how tissues of the titan arum contribute to thermogenesis and volatile production are proposed. 
    more » « less
  3. The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor. 
    more » « less
  4. Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) and integrated these into the cytokinin-activated transcriptional network. Primary targets of the type-B ARRs are enriched for genes involved in hormonal regulation, emphasizing the extensive crosstalk that can occur between cytokinin, auxin, abscisic acid, brassinosteroids, gibberellic acid, ethylene, jasmonic acid, and salicylic acid. Examination of hormone-related targets reveals multiple regulatory points including biosynthesis, degradation/inactivation, transport, and signal transduction. Here, we consider this early response to cytokinin in terms of the hormones involved, points of regulatory crosstalk, and physiological significance. 
    more » « less
  5. null (Ed.)
  6. The phytohormone cytokinin influences many aspects of plant growth and development, several of which also involve the cellular process of autophagy, including leaf senescence, nutrient remobilization, and developmental transitions. TheArabidopsistype-A response regulators (type-A ARR) are negative regulators of cytokinin signaling that are transcriptionally induced in response to cytokinin. Here, we describe a mechanistic link between cytokinin signaling and autophagy, demonstrating that plants modulate cytokinin sensitivity through autophagic regulation of type-A ARR proteins. Type-A ARR proteins were degraded by autophagy in an AUTOPHAGY-RELATED (ATG)5-dependent manner, and this degradation is promoted by phosphorylation on a conserved aspartate in the receiver domain of the type-A ARRs. EXO70D family members interacted with type-A ARR proteins, likely in a phosphorylation-dependent manner, and recruited them to autophagosomes via interaction of the EXO70D AIM with the core autophagy protein, ATG8. Consistently, loss-of-functionexo70D1,2,3mutants exhibited compromised targeting of type-A ARRs to autophagic vesicles, have elevated levels of type-A ARR proteins, and are hyposensitive to cytokinin. Disruption of both type-AARRsandEXO70D1,2,3compromised survival in carbon-deficient conditions, suggesting interaction between autophagy and cytokinin responsiveness in response to stress. These results indicate that the EXO70D proteins act as selective autophagy receptors to target type-A ARR cargos for autophagic degradation, demonstrating modulation of cytokinin signaling by selective autophagy. 
    more » « less
  7. Abstract Plants are exquisitely sensitive to the ethylene signal and also respond to a much wider range of ethylene concentrations than would seem possible based on the simple circuitry of its primary signal transduction pathway, suggesting the existence of mechanisms for amplification and adaptation to ethylene signals. Here, such regulatory systems are considered within the context of what is known about the plant ethylene signaling pathway as well as signaling by the animal G‐protein coupled receptors, and the bacterial methyl‐accepting chemotaxis proteins. Magnitude amplification and sensitivity amplification mechanisms are considered as strategies for amplification of the ethylene signal. Several families of negative feedback regulators that desensitize plants to ethylene and thereby facilitate the ethylene adaptation response of plants are described. These negative feedback regulators include the ethylene receptors themselves, the RTE1/GR family, and the ARGOS family, all of which function at the level of the ethylene receptors to desensitize plants to ethylene. These negative regulators also include the EBF family of F‐box proteins, which target the EIN3/EIL family of transcription factors for degradation. Ethylene signal amplification and adaptation employ both transcriptional and post‐transcriptional regulation. 
    more » « less